216 research outputs found

    Human Factors in High-Altitude Mountaineering

    Get PDF
    We describe the human performance and cognitive challenges of high altitude mountaineering. The physical (environmental) and internal (health) stresses are first described, followed by the motivational factors that lead people to climb. The statistics of mountaineering accidents in the Himalayas and Alaska are then described. We then present a detailed discussion of the role of decision-making biases in mountaineering mishaps. We conclude by discussing interpersonal factors, adaptation, and training issues

    Predictive Features of a Cockpit Traffic Display: A Workload Assessment

    Get PDF
    Eighteen pilots flew a series of traffic avoidance maneuvers in an experiment designed to assess the support offered and workload imposed by different levels of traffic display information in a free flight simulation. Three display prototypes were compared which differed in traffic information provided. A BASELINE (BL) display provided current and (2nd order) predicted information regarding ownship and current information of an intruder aircraft, represented on lateral and vertical displays in a coplanar suite. An INTRUDER PREDICTOR (IP) display, augmented the baseline display by providing lateral and vertical prediction of the intruder aircraft. A THREAT VECTOR (TV) display added to the IP display a vector that indicates the direction from ownship to the intruder at the predicted point of closest contact (POCC). The length of the vector corresponds to the radius of the protected zone, and the distance of the intersection of the vector with ownship predictor, corresponds to the time available till POCC or loss of separation. Pilots time shared the traffic avoidance task with a secondary task requiring them to monitor the top of the display for faint targets. This task simulated the visual demands of out-of-cockpit scanning, and hence was used to estimate the head-down time required by the different display formats. The results revealed that both display augmentations improved performance (safety) as assessed by predicted and actual loss of separation (i.e., penetration of the protected zone). Both enhancements also reduced workload, as assessed by the NASA TLX scale. The intruder predictor display produced these benefits with no substantial impact on the qualitative nature of the avoidance maneuvers that were selected. The threat vector produced the safety benefits by inducing a greater degree of (effective) lateral maneuvering, thus partially offsetting the benefits of reduced workload. The three displays did not differ in terms of their effect on performance of the monitoring task, used to infer head-down time, nor in the extent of vertical or airspeed maneuvering. The results are discussed in terms of their implications for 19 cognitive engineering design features

    Evaluation of Perspective and Coplanar Cockpit Displays of Traffic Information to Support Hazard Awareness in Free Flight

    Get PDF
    We examined the cockpit display representation of traffic, to support the pilot in tactical planning and conflict avoidance. Such displays may support the "free flight" concept, but can also support greater situation awareness in a non-free flight environment. Two perspective views and a coplanar display were contrasted in scenarios in which pilots needed to navigate around conflicting traffic, either in the absence (low workload) or presence (high workload) of a second intruder aircraft. All three formats were configured with predictive aiding vectors that explicitly represented the predicted point of closest pass, and predicted penetration of an alert zone around ownship. Ten pilots were assigned to each of the display conditions, and each flew a series of 60 conflict maneuvers that varied in their workload and the complexity of the conflict geometry. Results indicated a tendency to choose vertical over lateral maneuvers, a tendency which was amplified with the coplanar display. Vertical maneuvers by the intruder produced an added source of workload. Importantly, the coplanar display supported performance in all measures that was equal to or greater than either of the perspective displays (i.e., fewer predicted and actual conflicts, less extreme maneuvers). Previous studies that have indicated perspective superiority have only contrasted these with UNIplanar displays rather than the coplanar display used here

    Human Performance Consequences of Stages and Levels of Automation: An Integrated Meta-Analysis

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.Objective: We investigated how automation-induced human performance consequences depended on the degree of automation (DOA). Background: Function allocation between human and automation can be represented in terms of the stages and levels taxonomy proposed by Parasuraman, Sheridan, and Wickens. Higher DOAs are achieved both by later stages and higher levels within stages. Method: A meta-analysis based on data of 18 experiments examines the mediating effects of DOA on routine system performance, performance when the automation fails, workload, and situation awareness (SA). The effects of DOA on these measures are summarized by level of statistical significance. Results: We found (a) a clear automation benefit for routine system performance with increasing DOA, (b) a similar but weaker pattern for workload when automation functioned properly, and (c) a negative impact of higher DOA on failure system performance and SA. Most interesting was the finding that negative consequences of automation seem to be most likely when DOA moved across a critical boundary, which was identified between automation supporting information analysis and automation supporting action selection. Conclusion: Results support the proposed cost–benefit trade-off with regard to DOA. It seems that routine performance and workload on one hand, and the potential loss of SA and manual skills on the other hand, directly trade off and that appropriate function allocation can serve only one of the two aspects. Application: Findings contribute to the body of research on adequate function allocation by providing an overall picture through quantitatively combining data from a variety of studies across varying domains

    The Role of Individual Differences in Executive Attentional Networks and Switching Choices in Multi-Task Management

    Get PDF
    Individual differences in cognitive processing relate to critical performance differences in real-world environments. Task switching is required for many of them and especially for task management during overload. Research exploring individual differences related to switching behavior (both frequency, and adherence to optimal switch times) is, however, sparse. We examined these relationships here, using the attentional network task to index executive control, and an ongoing tracking task (within a larger suite of concurrent task demands) to examine switching behavior. The results failed to support a general relationship between executive control and frequency in a complex, heterogeneous multi-task environment. However, higher executive control participants more successfully exploited optimal switching times, highlighting the varying role of individual differences in task management, when choice is unconstrained

    Expertise in Aviation

    Get PDF
    This chapter makes the distinction between the experience of aviation professionals, often quantified in terms of hours of flight time, or flight qualifications, and expertise, as revealed by high proficiency at aviation tasks. Very high proficiency defines the expert. Challenge results because of the difficulty in measuring such proficiency, particularly beyond the student pilot level, and in air traffic control. The chapter also reviews the literature that examines the relation between experience, differences in cognitive ability, and the expertise of aviation professionals as pertains to controlling the aircraft, navigating, and communicating, as well as pertains to non-technical skills manifest by both pilots and air traffic controllers: situation awareness, decision making, task management and crew resource management. It is concluded that experience is only loosely coupled with proficiency in these areas

    Pilot Flying and Pilot Monitoring’s Aircraft State Awareness During Go-Around Execution in Aviation: A Behavioral and Eye Tracking Study

    Get PDF
    Objective: Examination of the performance and visual scanning of aircrews during final approach and an unexpected go-around maneuver. Background: Accident and incident analyses have revealed that go-around procedures are often imperfectly performed because of their complexity, their high time stress, and their rarity of occurrence that avails little time for practice. We wished to examine this experimentally and establish the frequency and nature of errors in both flight-performance and visual scanning. Method: We collected flight-performance (e.g., errors in procedures, excessive flight deviations) and eye-tracking data of 12 flight crews who performed final approach and go-around flight phases in realistic full-flight transport-category simulators. Results: The pilot performance results showed that two thirds of the crews committed errors including critical trajectory deviations during go-arounds, a precursor of accidents. Eye-tracking analyses revealed that the cross-checking process was not always efficient in detecting flight-path deviations when they occurred. Ocular data also highlighted different visual strategies between the 2 crew members during the 2 flight phases. Conclusion: This study reveals that the go-around is a challenging maneuver. It demonstrates the advantages of eye tracking and suggests that it is a valuable tool for the explicit training of attention allocation during go-arounds to enhance flight safety

    Current Concepts and Trends in Human-Automation Interaction

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.The purpose of this panel was to provide a general overview and discussion of some of the most current and controversial concepts and trends in human-automation interaction. The panel was composed of eight researchers and practitioners. The panelists are well-known experts in the area and offered differing views on a variety of different human-automation topics. The range of concepts and trends discussed in this panel include: general taxonomies regarding stages and levels of automation and function allocation, individualized adaptive automation, automation-induced complacency, economic rationality and the use of automation, the potential utility of false alarms, the influence of different types of false alarms on trust and reliance, and a system-wide theory of trust in multiple automated aids

    Predicting the Unpredictable: Estimating Human Performance Parameters for Off-Nominal Events

    Get PDF
    A parameter meta-analysis was conducted to characterize human responses to off-nominal events. The probability of detecting an off-nominal event was influenced by characteristics of the offnominal event scenario (phase of flight, expectancy, and event location) and the presence of advanced cockpit technologies (head-up displays, highway-in-the-sky displays, datalink, and graphical route displays). The results revealed that the presence of these advanced technologies hindered event detection reflecting cognitive tunneling and pilot complacency effects

    The Emerging Professional Practice of Remote Sighted Assistance for People with Visual Impairments

    Get PDF
    People with visual impairments (PVI) must interact with a world they cannot see. Remote sighted assistance (RSA) has emerged as a conversational assistive technology. We interviewed RSA assistants ( agents ) who provide assistance to PVI via a conversational prosthetic called Aira (https://aira.io/) to understand their professional practice. We identified four types of support provided: scene description, navigation, task performance, and social engagement. We discovered that RSA provides an opportunity for PVI to appropriate the system as a richer conversational/social support tool. We studied and identified patterns in how agents provide assistance and how they interact with PVI as well as the challenges and strategies associated with each context. We found that conversational interaction is highly context-dependent. We also discuss implications for design
    • …
    corecore